A string-searching algorithm that uses rolling hash to find an exact match of a pattern string in a text.
The expected time complexity is O(S+T) where S and T are the lengths of the original string s and the pattern string t respectively.
Its worst-case time complexity is O(ST).
Algorithm
First get the hash ht of the pattern string t.
We keep a sliding window of size T and compute the hash hs of the substring of s within the window.
Whenever ht == hs, the part in the window might be the same as t. In case of hash conflict, we linearly check the equity of them.
Implementation
Version 1
The hashes are signed long long.
We need to use a number m to mod the hashes in case of overflow.
We need to do hs += m when hs < 0.
// OJ: https://leetcode.com/problems/implement-strstr/// Author: github.com/lzl124631x// Time: average O(S+T), worst O(ST)// Space: O(1)classSolution {typedeflonglong LL;public:intstrStr(string s,string t) {int S =s.size(), T =t.size(), d =128; if (!S ||!T || T > S) return T ?-1:0; LL m =1e9+7, p =1, hs =s[0], ht =t[0];for (int i =1; i < T; ++i) { p = (p * d) % m; // we need d^(T-1) ht = (ht * d +t[i]) % m; hs = (hs * d +s[i]) % m; }for (int i =0; i <= S - T; ++i) { // Loop for each start/pop pointif (hs == ht) { // in case of collision, check the equity.int j =0;for (; j < T &&s[i + j] ==t[j]; ++j);if (j == T) return i; }if (i < S - T) hs = ((hs -s[i] * p) * d +s[i + T]) % m;if (hs <0) hs += m; // we might get negative hs, converting it to positive }return-1; }};
Version 2
This version is translated from standard golang implementation.
The hashes are unsigned int.
No mod number m is needed! It will automatically mod by 2^32 when overflow happens.
// OJ: https://leetcode.com/problems/implement-strstr/// Author: github.com/lzl124631x// Time: average O(S+T), worst O(ST)// Space: O(T)// Ref: https://github.com/golang/go/blob/ba9e10889976025ee1d027db6b1cad383ec56de8/src/internal/bytealg/bytealg.go#L128classSolution {constunsigned primeRK =16777619;pair<unsigned,unsigned> hashStr(string&s) {unsigned h =0, p =1, sq = primeRK;for (char c : s) h = h * primeRK + c;for (int i =s.size(); i >0; i >>=1) { // fast powif (i &1) p *= sq; sq *= sq; }return { h, p }; }public:intstrStr(string s,string t) {if (t.empty()) return0;unsigned T =t.size(), hs =0;auto [ht, p] =hashStr(t);for (int i =0; i < T; ++i) hs = hs * primeRK +s[i];if (hs == ht &&s.substr(0, T) == t) return0;for (int i = T; i <s.size(); ) { hs = hs * primeRK +s[i] - p *s[i - T];++i;if (hs == ht &&s.substr(i - T, T) == t) return i - T; }return-1; }};
Version 3
The hashes are unsigned long long. Using unsigned long long can reduce the chance of hash conflict. (Example: 1923. Longest Common Subpath (Hard))
No mod number m is needed! It will automatically mod by 2^32 when overflow happens.
// OJ: https://leetcode.com/problems/implement-strstr/// Author: github.com/lzl124631x// Time: average O(S + T), worst O(ST)// Space: O(1)classSolution {public:intstrStr(string s,string t) { unsigned long long S = s.size(), T = t.size(), d = 1099511628211, p = 1, hs = 0, ht = 0; // we can use d = 29 as well or some other prime greater than the size of the character set.
if (!S ||!T || T > S) return T ?-1:0;for (int i =0; i < S; ++i) { hs = hs * d +s[i] -'a';if (i < T) { p *= d; ht = ht * d +t[i] -'a'; }if (i >= T) hs -= (s[i - T] -'a') * p;if (i >= T -1&& hs == ht) {int j =0, start = i - T +1;for (; j < T &&s[start + j] ==t[j]; ++j);if (j == T) return start; } }return-1; }};
Why 1099511628211?
1099511628211 is the FNV(Fowler–Noll–Vo) prime for 64 bit integer. When using FNV prime, the hash values produced are more scattered throughout the hash space.
vector<ULL> rolling(vector<int> &A,int len) {unsignedlonglong d =1099511628211, h =0, p =1; vector<ULL> ans;for (int i =0; i <A.size(); ++i) { h = h * d +A[i];if (i < len) p *= d;else h -=A[i - len] * p;if (i >= len -1) ans.push_back(h); }return ans;}
Prefix Hash Array
// Generate Prefix Hash Arrayunsignedlonglong d =1099511628211,h[501] = {},p[501] = {1}, N =s.size();for (int i =0; i < N; ++i) {p[i +1] =p[i] * d;h[i +1] =h[i] * d +s[i];}// Access a hash of a substring of s[begin, end)unsignedlonglonghash(int begin,int end) {returnh[end] -h[begin] *p[end - begin];}