Sliding Window
Find Maximum Window
See my post C++ Maximum Sliding Window Cheatsheet Template!
Template 1: Shrinkable Sliding Window
int i = 0, j = 0, ans = 0;
for (; j < N; ++j) {
// CODE: use A[j] to update state which might make the window invalid
for (; invalid(); ++i) { // when invalid, keep shrinking the left edge until it's valid again
// CODE: update state using A[i]
}
ans = max(ans, j - i + 1); // the window [i, j] is the maximum window we've found thus far
}
return ans;
Essentially, we want to keep the window valid at the end of each outer for
loop.
Let's apply this template to 1838. Frequency of the Most Frequent Element (Medium).
What should we use as the
state
? It should be the sum of numbers in the windowHow to determine
invalid
? The window is invalid if(j - i + 1) * A[j] - sum > k
.(j - i + 1)
is the length of the window[i, j]
. We want to increase all the numbers in the window to equalA[j]
, the number of operations needed is(j - i + 1) * A[j] - sum
which should be<= k
. For example, assume the window is[1,2,3]
, increasing all the numbers to3
will take3 * 3 - (1 + 2 + 3)
operations.
// OJ: https://leetcode.com/problems/frequency-of-the-most-frequent-element/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
class Solution {
public:
int maxFrequency(vector<int>& A, int k) {
sort(begin(A), end(A));
long i = 0, N = A.size(), ans = 1, sum = 0;
for (int j = 0; j < N; ++j) {
sum += A[j];
while ((j - i + 1) * A[j] - sum > k) sum -= A[i++];
ans = max(ans, j - i + 1);
}
return ans;
}
};
Template 2: Non-shrinkable Sliding Window
int i = 0, j = 0;
for (; j < N; ++j) {
// CODE: use A[j] to update state which might make the window invalid
if (invalid()) { // Increment the left edge ONLY when the window is invalid. In this way, the window GROWs when it's valid, and SHIFTs when it's invalid
// CODE: update state using A[i]
++i;
}
// after `++j` in the for loop, this window `[i, j)` of length `j - i` MIGHT be valid.
}
return j - i; // There must be a maximum window of size `j - i`.
Essentially, we GROW the window when it's valid, and SHIFT the window when it's invalid.
Note that there is only a SINGLE for
loop now!
Let's apply this template to 1838. Frequency of the Most Frequent Element (Medium) again.
// OJ: https://leetcode.com/problems/frequency-of-the-most-frequent-element/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
class Solution {
public:
int maxFrequency(vector<int>& A, int k) {
sort(begin(A), end(A));
long i = 0, j = 0, N = A.size(), sum = 0;
for (; j < N; ++j) {
sum += A[j];
if ((j - i + 1) * A[j] - sum > k) sum -= A[i++];
}
return j - i;
}
};
Apply these templates to other problems
Sliding Window (Shrinkable)
What's
state
?cnt
as the number of0
s in the window.What's
invalid
?cnt > 1
is invalid.
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0, ans = 0;
for (; j < N; ++j) {
cnt += A[j] == 0;
while (cnt > 1) cnt -= A[i++] == 0;
ans = max(ans, j - i); // note that the window is of size `j - i + 1`. We use `j - i` here because we need to delete a number.
}
return ans;
}
};
Sliding Window (Non-shrinkable)
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int longestSubarray(vector<int>& A) {
int i = 0, j = 0, N = A.size(), cnt = 0;
for (; j < N; ++j) {
cnt += A[j] == 0;
if (cnt > 1) cnt -= A[i++] == 0;
}
return j - i - 1;
}
};
Sliding Window (Shrinkable)
state
:cnt[ch]
is the number of occurrence of characterch
in window.invalid
:cnt[s[j]] > 1
is invalid.
// OJ: https://leetcode.com/problems/longest-substring-without-repeating-characters/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int lengthOfLongestSubstring(string s) {
int i = 0, j = 0, N = s.size(), ans = 0, cnt[128] = {};
for (; j < N; ++j) {
cnt[s[j]]++;
while (cnt[s[j]] > 1) cnt[s[i++]]--;
ans = max(ans, j - i + 1);
}
return ans;
}
};
Sliding Window (Non-shrinkable)
Note that since the non-shrinkable window might include multiple duplicates, we need to add a variable to our state.
state
:dup
is the number of different kinds of characters that has duplicate in the window. For example, if window containsaabbc
, thendup = 2
becausea
andb
has duplicates.invalid
:dup > 0
is invalid
// OJ: https://leetcode.com/problems/longest-substring-without-repeating-characters/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int lengthOfLongestSubstring(string s) {
int i = 0, j = 0, N = s.size(), cnt[128] = {}, dup = 0;
for (; j < N; ++j) {
dup += ++cnt[s[j]] == 2;
if (dup) dup -= --cnt[s[i++]] == 1;
}
return j - i;
}
};
Sliding Window (Shrinkable)
state
:prod
is the product of the numbers in windowinvalid
:prod >= k
is invalid.
Note that since we want to make sure the window [i, j]
is valid at the end of the for
loop, we need i <= j
check for the inner for
loop. i == j + 1
means this window is empty.
Each maximum window [i, j]
can generate j - i + 1
valid subarrays, so we need to add j - i + 1
to the answer.
// OJ: https://leetcode.com/problems/subarray-product-less-than-k/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int numSubarrayProductLessThanK(vector<int>& A, int k) {
if (k == 0) return 0;
long i = 0, j = 0, N = A.size(), prod = 1, ans = 0;
for (; j < N; ++j) {
prod *= A[j];
while (i <= j && prod >= k) prod /= A[i++];
ans += j - i + 1;
}
return ans;
}
};
The non-shrinkable template is not applicable here since we need to the length of each maximum window ending at each position
Find Minimum Window
int i = 0;
for (int j = 0; j < N; ++j) {
// use A[j] to update state.
while (valid()) {
ans = min(ans, j - i + 1);
// use A[i] to update state
++i;
}
}
Problems
Find Minimum
Find Maximum
The following problems are also solvable using the shrinkable template with the "At Most to Equal" trick
Find Minimum and Maximum
Fixed-length Sliding Window
Last updated
Was this helpful?