int i =0, j =0, ans =0;for (; j < N; ++j) { // CODE: use A[j] to update state which might make the window invalidfor (; invalid(); ++i) { // when invalid, keep shrinking the left edge until it's valid again // CODE: update state using A[i] } ans =max(ans, j - i +1); // the window [i, j] is the maximum window we've found thus far}return ans;
Essentially, we want to keep the window valid at the end of each outer for loop.
What should we use as the state? It should be the sum of numbers in the window
How to determine invalid? The window is invalid if (j - i + 1) * A[j] - sum > k.
(j - i + 1) is the length of the window [i, j]. We want to increase all the numbers in the window to equal A[j], the number of operations needed is (j - i + 1) * A[j] - sum which should be <= k. For example, assume the window is [1,2,3], increasing all the numbers to 3 will take 3 * 3 - (1 + 2 + 3) operations.
// OJ: https://leetcode.com/problems/frequency-of-the-most-frequent-element/// Author: github.com/lzl124631x// Time: O(NlogN)// Space: O(1)classSolution {public:intmaxFrequency(vector<int>& A,int k) {sort(begin(A),end(A));long i =0, N =A.size(), ans =1, sum =0;for (int j =0; j < N; ++j) { sum +=A[j];while ((j - i +1) *A[j] - sum > k) sum -=A[i++]; ans =max(ans, j - i +1); }return ans; }};
Template 2: Non-shrinkable Sliding Window
int i =0, j =0;for (; j < N; ++j) { // CODE: use A[j] to update state which might make the window invalid if (invalid()) { // Increment the left edge ONLY when the window is invalid. In this way, the window GROWs when it's valid, and SHIFTs when it's invalid
// CODE: update state using A[i]++i; } // after `++j` in the for loop, this window `[i, j)` of length `j - i` MIGHT be valid.}return j - i; // There must be a maximum window of size `j - i`.
Essentially, we GROW the window when it's valid, and SHIFT the window when it's invalid.
What's state? cnt as the number of 0s in the window.
What's invalid? cnt > 1 is invalid.
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/// Author: github.com/lzl124631x// Time: O(N)// Space: O(1)classSolution {public:intlongestSubarray(vector<int>& A) {int i =0, j =0, N =A.size(), cnt =0, ans =0;for (; j < N; ++j) { cnt +=A[j] ==0;while (cnt >1) cnt -=A[i++] ==0; ans = max(ans, j - i); // note that the window is of size `j - i + 1`. We use `j - i` here because we need to delete a number.
}return ans; }};
Sliding Window (Non-shrinkable)
// OJ: https://leetcode.com/problems/longest-subarray-of-1s-after-deleting-one-element/// Author: github.com/lzl124631x// Time: O(N)// Space: O(1)classSolution {public:intlongestSubarray(vector<int>& A) {int i =0, j =0, N =A.size(), cnt =0;for (; j < N; ++j) { cnt +=A[j] ==0;if (cnt >1) cnt -=A[i++] ==0; }return j - i -1; }};
state: cnt[ch] is the number of occurrence of character ch in window.
invalid: cnt[s[j]] > 1 is invalid.
// OJ: https://leetcode.com/problems/longest-substring-without-repeating-characters/// Author: github.com/lzl124631x// Time: O(N)// Space: O(1)classSolution {public:intlengthOfLongestSubstring(string s) {int i =0, j =0, N =s.size(), ans =0,cnt[128] = {};for (; j < N; ++j) {cnt[s[j]]++;while (cnt[s[j]] >1) cnt[s[i++]]--; ans =max(ans, j - i +1); }return ans; }};
Sliding Window (Non-shrinkable)
Note that since the non-shrinkable window might include multiple duplicates, we need to add a variable to our state.
state: dup is the number of different kinds of characters that has duplicate in the window. For example, if window contains aabbc, then dup = 2 because a and b has duplicates.
state: prod is the product of the numbers in window
invalid: prod >= k is invalid.
Note that since we want to make sure the window [i, j] is valid at the end of the for loop, we need i <= j check for the inner for loop. i == j + 1 means this window is empty.
Each maximum window [i, j] can generate j - i + 1 valid subarrays, so we need to add j - i + 1 to the answer.
// OJ: https://leetcode.com/problems/subarray-product-less-than-k/// Author: github.com/lzl124631x// Time: O(N)// Space: O(1)classSolution {public:intnumSubarrayProductLessThanK(vector<int>& A,int k) {if (k ==0) return0;long i =0, j =0, N =A.size(), prod =1, ans =0;for (; j < N; ++j) { prod *=A[j];while (i <= j && prod >= k) prod /=A[i++]; ans += j - i +1; }return ans; }};
The non-shrinkable template is not applicable here since we need to the length of each maximum window ending at each position
Find Minimum Window
int i =0;for (int j =0; j < N; ++j) { // use A[j] to update state.while (valid()) { ans =min(ans, j - i +1); // use A[i] to update state++i; }}